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ANTI-REVERSE ENGINEERING UNIFIED
PROCESS

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Application No. 61/526,669, filed Aug. 23, 2011; the disclo-
sure of which is incorporated herein by reference.

BACKGROUND

Current software anti-reverse engineering techniques are
often only marginally effective. Code obfuscation can only
slow down the process of static analysis because the logic is
still basically the same and exposed. Anti-debug and anti-
disassembly techniques can only trick current versions of
debuggers and disassemblers and can be disabled manually if
attackers spot the tricking instructions. Code encryption must
at some point leave the decrypted code in memory for execu-
tion, not to mention that the key used for decryption must be
embedded somewhere in the program which can be revealed.
Some protection schemes use many layers of protection but
eventually have to leave the outermost layer unprotected and
therefore attackers can cascade attacks from there.

Every lock on earth relies on the complexity of the key. But
if the key is embedded inside the lock, its complexity
becomes trivial. This is the common fundamental weakness
of the techniques mentioned above, for they all can be put in
one category: security through obscurity. That is, the key to
unlock the protection mechanism is still embedded inside the
software program and in theory can never escape complete
logic analysis. Therefore, no matter how complicated the
programmer writes the code, the complexity of the key only
scales linearly with that of the whole protection scheme. With
a combination of debugging and tracing tools, attackers can
quickly analyze and find out the logic of the key in linear time.

This challenge does not exist in cryptography where the
key is not present at all in the encrypted file and the searchable
key space expands exponentially with the complexity of the
protection mechanism. Unfortunately, cryptography cannot
be applied directly for code protection since the processor
only accepts assembly language which is publicly known and
not encrypted. Thus, the key must be included for decryption
should the code be encrypted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary process flow configured to
execute a set of instructions and output a timing map.

FIG. 2 shows an exemplary process flow of FIG. 1, includ-
ing a step of creating a deterministic environment for per-
forming one or more steps.

FIG. 3 shows an exemplary process flow for a virtual
machine configured to generate a composite time output
value.

FIG. 4 shows an exemplary computing device useful for
performing processes disclosed herein.

While systems and methods are described herein by way of
example and embodiments, those skilled in the art recognize
that systems and methods for anti-reverse engineering for
software are not limited to the embodiments or drawings
described. It should be understood that the drawings and
description are not intended to be limited to the particular
form disclosed. Rather, the intention is to cover all modifica-
tions, equivalents and alternatives falling within the spirit and
scope of the disclosed embodiments. Any headings used
herein are for organizational purposes only and are not meant
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to limit the scope of the description or the claims. As used
herein, the word “may” is used in a permissive sense (i.e.,
meaning having the potential to) rather than the mandatory
sense (i.e., meaning must). Similarly, the words “include”,
“including”, and “includes” mean including, but not limited
to.

DETAILED DESCRIPTION

Disclosed embodiments provide computer-implemented
methods, systems, and computer-readable media for anti-
reverse engineering of software using a unified process. The
unified process may allow a software programmer to execute
aversion of software in a setup mode that shows the program-
mer’s logic while allowing other users to execute a version of
the software in a run mode that prevents the users (i.e., poten-
tial attackers) from observing how the program works.
Embodiments may provide a virtual machine executed on a
computing device that can work but cannot be observed.
Additionally, embodiments may preclude any backdoors that
could allow any kind of observation into the virtual machine’s
working.

Embodiments may preclude static analysis by partly
removing a portion of the logic of protected code out of an
executable file and allowing the partly removed portion to be
implied by the micro-architecture of a processor or comput-
ing device. Thus, in execution, the executable file and the
designated processor may cooperate to execute the complete
protected logic in such a fashion that any attempt at debug-
ging the process will damage the process, thus preventing
attackers from identifying the correct logic.

The following metaphoric scenario analogizes the problem
of software anti-reverse engineering to removing protected
logic out of an algorithm for traversing a maze and then
explains how a transformed algorithm may become an “invis-
ible” virtual machine. A robot may have millions or more
possible paths to traverse a maze. A programmer may be
tasked with writing instructions for the robot to go through the
maze in an arbitrary path such that no one else can deduce the
correct path from the instructions given the constraints that 1)
everyone has the same knowledge regarding the robot’s logic
and 2) the language used to talk to the robot is a standard.

Suppose the maze has only three-way corners at which the
robot can only go straight or make a turn. The programmer
can write simple sequential instructions like “turn at A,
straight at B, turn at C, etc.” to guide the robot through a
chosen path. However, this direction map is so straightfor-
ward that anyone can discover the path. Alternatively, the
programmer might choose to encrypt the direction map. But
no matter what kind of encryption is used, the programmer
will have to give the robot the key for decryption, thus anyone
can acquire the unprotected key.

The task sounds like a first dead end since whatever instruc-
tions the programmer writes down must conform to the
known logic of the robot, and hence, according to the con-
straints, others can also understand it and discover the path.
However, a method to solve this dead end may be to base the
instructions on those factors usable by the robot but unusable
and unobservable by anyone else, including the programmer.
One such factor may be the robot’s speed, assuming the robot
has a deterministic but very complex speed function known to
no one.
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To exploit the robot’s unknown speed, assume that the
programmer can instruct the robot to follow the procedure
below:

1. Reset the clock and enter the maze.

2. At every corner, compare the current value of its clock
with a list of time values (e.g., 10 nanoseconds, 15
nanoseconds, 18 nanoseconds, etc.).

3. If a match occurs, make a turn at that corner. If not, go
straight.

4. Repeat step 2 and 3 until getting out of the maze.
Since the speed of the robot is unknown, no one can deduce
the distance it will travel in the time intervals above. There-
fore, no one will know at which corners the robot will turn.
Assuming that the programmer can create such a list of time
values (i.e., a time map) in the procedure above, they have
created instructions usable only by the robot.

However, the assumption in the above solution for the first
dead end incurs a second dead end in which the programmer
has to create time values based on the robot’s speed which is
unknown to all, including the programmer. However, the
second dead end may be solved by letting the robot create the
time values by itself. The process for creating the instructions
may now have two modes. In the first mode, referred to as a
setup mode, the programmer may give the robot the direction
map to go through the maze and instruct it to record the time
values corresponding to the corners at which it turns. By the
time the robot completes the first run through the maze, it will
have produced a time map containing the needed time values.
Now the programmer can destroy the direction map and let
the robot keep only the time map. From now on, every time
the robot needs to run through the maze, it only needs to use
the time map and follow this procedure. This mode may be
referred to as a run mode.

Note that this metaphoric scenario assumes that the setup
mode can be performed in a protected environment. In other
words, a user or potential attacker cannot be present to look
into the direction map the programmer gives the robot. Only
after the programmer has finished the setup mode and
destroyed the direction map can other users come and look
into the time map kept by the robot. At this point, the time map
may be visible to users. However, because users do not know
the deterministic but complex speed function of the specific
robot, they cannot derive the direction map from the time
map.

The robot’s speed function may be complex and dependent
on many factors, including the activities of the robot while
running (e.g., the robot’s execution of the time map). The
activities in the setup mode and the run mode mentioned
above are different, thereby potentially causing the robot to
have a different speed function in each mode. This means the
time values created in the setup mode would become invalid
in the run mode. This presents a third dead end requiring one
time frame for two different processes. A programmer cannot
simply add null activities to one mode to make it timing-
equivalent to the other since the programmer does not know
the robot’s speed function with regard to its activities.

Embodiments may solve this problem by unifying the two
processes into one unified process which carries all activities
for both the setup mode and the run mode. This translates to
the following procedure for the robot to do at each corner:

1. Read the direction map and make decision #1 for turning
or not.

2. Read the time map and make decision #2 for turning or
not.

3. Ifthe current mode is the setup mode, make decision #1
the final decision. If the current mode is the run mode,
make decision #2 the final decision.
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4. If making a turn, write down the current time value into
a new time map.

5. Follow the final decision to make a turn or not.

The procedure above may be applied to both the setup and
the run mode. However, in the setup mode, the programmer
may give the robot a direction map and a blank time map.
After the setup mode, the robot will have created a time map
because of step #4 in the unified process above and the pro-
grammer can destroy the original direction map. In the run
mode, the programmer only needs to give the robot a blank
direction map and the correct time map created in the setup
mode. This solution completes the programmer’s mission.

Embodiments provide a new software anti-reverse engi-
neering technique that aims to solve the fundamental weak-
ness in current techniques by applying the new concept pre-
sented above with the robot corresponding to the processor
and the maps to the instructions for the processor. The act of
the robot turning at a corner corresponds to the execution of a
basic instruction in the processor. The time it takes for the
robot to move corresponds to the time it takes for the proces-
sor to process instructions. In the robot scenario, the original
logic of the direction map may be taken out in the time map
and implied by the robot’s speed. Similarly, embodiments
may remove protected logic out of the executable file and let
its logic be implied by the complex micro-architecture of a
designated processor. That is, protected code may be trans-
formed one-way into a time-based language which, in execu-
tion, will be interpreted by a virtual machine based on the
precise performance of the particular processor in use. The
transformed code therefore can be interpreted correctly only
when run on the processor designated in the transformation
process (i.e., in the setup mode). When run on a processor
having a different performance (e.g., a different micro-archi-
tecture, a different clock rate, a different cache size, etc.), the
virtual machine will interpret the time-based language differ-
ently (i.e., wrongly). Protected logic may thus be hidden by
the complexity of the processor’s micro-architecture.

The more complicated the designated processor is, the
more secure the protected code may be. Modern processors
are so complicated that their performance is considered deter-
ministically chaotic as described in the Hugues Berry’s 2005
paper “Chaos in Computer Performance”, the contents of
which are hereby incorporated by reference. Therefore, the
transformed code may be incomprehensible to all, including
the programmer, but the designated processor. Additionally,
alternative embodiments may utilize the complexity of other
aspects of a computing device (e.g., a system clock) to further
increase security.

Since the virtual machine measures the precise perfor-
mance of the processor (e.g., down to the exact number of
clock cycles), its execution must be in a stable condition of the
processor in which there are absolutely no interruptions. For
this extreme sensitivity, any kind of interference, such as
debugging, tracing, interrupts, emulation, tampering, and the
like, may cause the transformed code to run incorrectly, thus
preventing attackers from tracing the protected logic.

The unified process may be implemented in the form of a
virtual machine. The virtual machine may be defined by the
programmer to have an arbitrary set A consisting of N basic
instructions (i.e., A={#1,#2, ... #N}) each of which may be
specified to operate on a certain memory location within a
defined memory pool M. Just like the robot takes both the
direction map and the time map for its unified process, the
virtual machine may accept two inputs:

1) A queue of indexes of basic instructions chosen out of A,

which is equivalent to the direction map. Let each basic
instruction be identified by a unique number from 1 to N.
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An exemplary input queue may be [=[#3, #2, #6, #3] for
the virtual machine to execute the corresponding
sequence of instructions. Queue I may include an arbi-
trary number of basic instructions.

2) A queue of input time values, T

to the time map.

The outputs of this process will be the execution of the
instructions in A corresponding to [ and a queue of new time
values, T,,,,...- FIG. 1 shows an exemplary process flow 100
for this process. The process may be a loop which repetitively
browses through all the basic instructions in A and executes
any instruction as specified either in I orin T,,,,,,,, while at the
same time creating a new list of time values T,,,,,,,,-

This unified process may be used in the same fashion as
described in the robot scenario. First, in a setup mode, a
programmer may input an instruction queue I and an empty
time value queue T, As the setup mode is performed, the
virtual machine may execute the instructions in instruction
queue I and may output a time queve T,,,,,,,,,. For example, the
virtual machine may receive as an input I=[#3, #2, #6, #3] and

which is equivalent

input’

an empty T, . as indicated in Table 1 below.
TABLE 1
1 Tinput Touzput
#3 EMPTY
# EMPTY
#6 EMPTY
#3 EMPTY

While a computing device performs process flow 100,
instructions in A are executed according to input I and the
time at which each instruction in A is executed is inserted into
the time queve T,,,,,,,,- For example, at step 110, the process
flow may set key to the current time at sub-step 112, then at
sub-step 114, determine if either i==#1 or if t1=key (note
that for clarity a single equal sign (=) is generally used in this
disclosure as an assignment operator while a double equal
sign (=) is generally used in this disclosure as an equality
operator). Because T, ,, was empty, t1 cannot equal key, so
in the setup mode step 114, may reduce to determining
whether i==#1. Because the first instruction i in I is #3, the
determination may result in “N” (i.e., no or Boolean 0) and
proceed to the next step 110, (not shown). Eventually, at step
110, a match may be found where i=#3, thus instruction #3
may be executed and the current time (i.e., key) may be
inserted into the T,,,,, ., queue. This process may continue to
loop until the end of one or more of instruction queue I and
T, pur queue is reached. Table 2 below shows an exemplary
T .upur quene that may be generated by a computing device
executing instruction queue [ according to process flow 100.

TABLE 2
I Tinput Touq}ut
#3 EMPTY 21s
#2 EMPTY 3ns
#6 EMPTY 5ns
#3 EMPTY 6ns

Asexplained above, the T, queue may be unique to the
specific micro-architecture of the processor or computing
device executing the instructions. Because of the level of
sophistication of the processor, the T, ,,,,, queue may only be
generated by the specific micro-architecture of the processor
executing the instructions and may not be derived by even the
programmer who may know the instruction queue 1. After the
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setup mode is complete, the programmer may destroy the
instruction queue I and keep only the newly created time
queueT,,,  asatimemapT,,,,. From then on, inarun mode
the virtual machine may execute the same instruction
sequence again by inputting only the T, ,, as the T,,,,,,, and an
empty instruction queue 1. Table 3 below illustrates such an
input.

TABLE 3
I Tinput Touzput
EMPTY 2ns
EMPTY 3ns
EMPTY Sns
EMPTY 6 ns

The process flow 100 may then be performed by a com-
puting device to execute the same instructions illustrated
above in table 1. The specific micro-architecture of the pro-
cessor may provide unique timing to provide the logic hidden
by the timing map. As process flow 100 is performed, the
instructions may be executed as set forth by the programmer
and anew T, queue may be filled with the same timing
map data determined when the instructions | were executed.
Table 4 below illustrates the queue T, after being filled by
process flow 100 being performed with T, as the T, ..
Notice that even though the specific micro-architecture of the
processor may be extremely complex, the process flow 100
executed within a deterministic virtual machine may execute
the process in the same time (e.g., the same number of pro-
cessor cycles may be utilized to perform the same steps of
process flow 100 every time it is executed) independent of
whether the process flow 100 is being utilized in a setup mode
or a run mode.

TABLE 4
1 Tinput Toutput
EMPTY 2ns 2ns
EMPTY 3ns 3ns
EMPTY 5ns 5ns
EMPTY 6 ns 6 ns

While the above generally discloses receiving an empty
instruction queue I or an empty T,,,,,,, embodiments may be
configured to automatically generate an empty time value
queue T, . upon receipt of an instruction queuve I or to
automatically generate an empty instruction queue I upon
receipt of a time value queve T,, .

Process flow 100 illustrates a unified process flow that
performs the same functions independent of whether the vir-
tual machine is running in a setup mode or in a run mode. In
other words, the terms setup mode and run mode refer to how
aprogrammer or user utilizes the process and does not change
how the process is performed. FIG. 2 shows a simplified
exemplary process flow 200 performing the same functional-
ity as process flow 100 described above. FIG. 2 illustrates that
avirtual machine according to embodiments disclosed herein
may receive at least one of an instruction queue I and a time
value queue T,,,,,, create a deterministic environment for the
virtual machine so that a consistent timing map may be gen-
erated, execute the instructions according to the received
input while simultaneously generating a timing map, and
output a timing map T,,,,,,,,.- If the received instruction queue
1 corresponds to the original instructions prepared by a pro-
grammer, then the virtual machine may correctly execute the
instructions and generate a unique timing map T,,,,,,, corre-



US 9,111,072 Bl

7

sponding to the micro-architecture of the processor on which
the virtual machine is being executed.

Alternatively, if a previously generated correct time value
queue T, is received as input, the virtual machine may
also correctly execute the instructions and generate the same
unique time value queue corresponding to the micro-archi-
tecture of the processor. However, if there have been any
changes to the system (e.g., if an attacker attempts to observe
the operation of the virtual machine such as by inserting break
points, if the attacker attempts to derive the operation of the
virtual machine by inputting a modified instruction queue I or
time value queue T,,,,,,,,, if an attacker attempts to execute the
time value queue on a processor having a different micro-
architecture, and the like), the incorrect instructions will
execute and an incorrect time value queve T, will be
output by process flow 200.

Embodiments assume that the internal working mecha-
nism of the processor is sufficiently complex that no one can
deduce the meanings (i.e., the corresponding basic instruc-
tions) of various values of key unless trying all possible
values for the instruction queue in the setup mode. Therefore,
an executable file with the protected code executing in the run
mode will not contain the “key” of the protection scheme.

Asnoted above, for the virtual machine to run correctly and
stably, it must be executed free of any nondeterministic time-
variant factors during execution (i.e., the performance of the
virtual machine must be deterministic). For example, the
virtual machine may run in a special mode of the processor in
which all the interrupts are disabled. Otherwise, asynchro-
nous interrupts caused by various hardware parts of the sys-
tem may cause the time frame of the unified process to vary
and the time values created in the setup mode will likely
become invalid in the run mode.

Also, all variant latencies may be eliminated for the unified
process to be stable. For example, all necessary data from the
external memory to be transferred to the cache of the proces-
sor may be locked to hide the variant latencies often associ-
ated with accessing the external memory.

Every time the unified process runs, regardless whether in
the setup mode or run mode, it might process different data.
Embodiments may be configured such that the execution time
of related operations may be independent of the parameters.
For example, if the execution time of a multiply instruction is
dependent on the operands, the multiply instruction may be
replaced by an algorithm consisting of only logic operations
which have constant execution time. Prior to execution of an
instruction set I, embodiments may be configured to detect
operations having potentially inconsistent execution time and
replace them with alternative operations (e.g., logical opera-
tions) having consistent execution time.

Embodiments may alternatively require a programmer to
provide a set of instructions [ having a consistent execution
time. Embodiments may determine whether a set of instruc-
tions has a consistent execution time, for example by execut-
ing the set of instructions multiple times and comparing the
execution time, and alert a programmer if the instructions
have an inconsistent execution time.

While the exemplary embodiment of FIG. 1 may have a
linear key space, alternative embodiments may have an expo-
nential key space. The following provides a brief explanation
oflinear and exponential key spaces then proceeds to disclose
embodiments having exponential key spaces.

Suppose a black-box contains a hidden string S1 having n
letters. The box may allow a user to input a string of letters S2
and compare strings S1 and S2. If S1 contains S2 from the first
letter (e.g., “abcde” vs. “abc” or “abede” vs. “abede™), the
black-box may output “yes”. Otherwise, the black-box may
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output “no”. In such a black-box, the string S1 may be deter-
mined by searching each letter separately. A user may search
for the first letter, such as by searching each letter in turn (e.g.,
“a”,“b”, ..., “z”) until receiving a “yes”. Once determining
the first letter, the user may search for the second letter (e.g.,
if the first letter is “a”, search “aa”, “ab”, ..., “az”). The user
may repeat the same steps to find the rest of the n letters. In
this scenario, the maximum number of trials therefore would
be 26*n as the alphabet has 26 letters. Thus, the searchable
key space expands only linearly with n and is typically
referred to as linear space. This kind of key space is small and
can be cracked quickly (e.g., via a brute force attack).

Similar to this example of S1, attackers may somewhat
efficiently attack the virtual machine and process flow
described with reference to FIG. 1 above by executing the
process in the setup mode and searching for the meanings of
each time value separately. To find the first instruction, the
attacker can try specifying an instruction from set A as the
first instruction in an instruction queue and input this queue to
the virtual machine to get the corresponding time value. The
attacker can then repeat this trial for each of the instructions
from A and eventually will find an instruction that has a time
value equal to the first time value in the original time queue
(T,..p)- Therefore, in the unified process described above the
key space expands linearly with the complexity of the pro-
cess. More specifically, the size of the key space is equal to the
size of A multiplied by the length of the instruction sequence
to be executed. This key space may be too small to meet some
security requirements.

To increase the security, the black-box described with ref-
erence to S1 may be given a much larger key space by apply-
ing the following rules. If the length of S2 is less than that of
S1, the black-box may append as many default letters (e.g.,
“z”)as needed to S2 to make it have the same length as S1. For
example, if S1 is “abcdef” and S2 is “abce”, the black-box may
change S2 to “abczzz”. Thus, in operation, when the black-
box compares S1 to the modified S2, it will give out a “yes”
only if the two entire strings are identical and a “no” other-
wise. With such a modified behavior of the black box, an
attacker cannot search for each letter separately. Instead, the
attacker would have to input strings containing n letters and
will receive a “yes” only when the attacker inputs the correct
string. The key space, therefore, increases to 26”, a consider-
ably large key space that expands exponentially with n. This
type of key space may be referred to as an exponential key
space.

In similar fashion to the exponential key space of the black-
box, embodiments may provide a unified process having a
key space that expands exponentially with N, the number of
instructions in set A. To accomplish this, a virtual machine
according to embodiments may hide individual time values
into a composite time value. In an exemplary embodiment,
this may be accomplished by multiplying individual time
values together in the setup mode. The resulting composite
value may then be the input for the run mode in which the
virtual machine will check if a particular value (i.e., key) is a
component of the composite value by dividing the composite
value by key and compare the remainder to zero. In other
embodiments, alternative functions may be useful for incor-
porating individual time values into one or more composite
time values.

The virtual machine may also create a default time value.
The default time value may be incorporated into the compos-
ite value for every invalid and/or null instruction specified in
the instruction queue. For example, the default time value
may be incorporated into the composite value based on a
probability basis.
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To ensure that the virtual machine cannot be terminated
prematurely and will incorporate the same number of time
values (either valid or default values) into the composite time
value, the virtual machine may be configured to receive a
large value Z (as shown in FIG. 3 discussed below). Z may be
reduced over time and the virtual machine may be configured
to terminate only when it reaches zero. Alternatively, the
virtual machine may be configured to terminate when Z
reaches a different threshold value. To prevent an attacker
from inputting a small value Z to terminate the virtual
machine early, the virtual machine may be configured to
incorporate Z into the composite time value.

FIG. 3 shows an exemplary process flow 300 for a virtual
machine configured to generate a composite time value
T,upur The virtual machine may receive as an input one or
more of an instruction map I, an input composite time value
Typue (in @ setup mode T,,,,, may equal “1” while in a run
mode T,,,,,, may equal T, a previous composite T,,,,.),
and a large value Z. Process flow 300 may also initialize
composite time value T,,,,,,, to 1, a Boolean variable “di” to
“07, and key to “0”. The variable di is a Boolean variable for
checking if an instruction has been executed in the current
iteration of the loop.

In a setup mode, process flow 300 may receive an input of
Typu=1 so that T, % key (i.e., the remainder of the integer
division T,,,,/key) will never equal 0. This configures the
process to only execute the instructions in the instruction map
1 during a setup mode. The setup mode may thus both execute
the instructions in instruction map I and generate an output
composite time value T, Ty, may then be used as a
timing map, T,,,,,, a valid composite time value representing
the sequence of instructions previously described by instruc-
tion map I. In a run mode, T, , may receive the T, com-
posite value and an empty I to execute the same set of instruc-
tions.

To determine a value for Z, in the setup mode a program-
mer may test multiple input values until determining a Z value
that is big enough for the virtual machine to complete the
instruction queue [ but not so big that lots of computing cycles
are wasted. The statement “z=z/key” illustrates that at the end
of each cycle of process flow 300, the virtual machine may
reassign z the integer division of z by key. The statement
“key=key+z % key” incorporates z into key so that attackers
cannot change the value of Z at the beginning to terminate the
loop prematurely. If a different value Z is received as input, it
may cause deviations in the values of key and hence the
correct logic path may not be executed.

If attackers try to search for the first instruction in the
original I by in turn assigning every basic instruction as the
first instruction in an instruction queue and inputting the
queue to the process for the setup mode, they will get a new
T.upue different from the original T, even though they
might have specified the first instruction correctly. This is
because after the unified process executes the first and only
instruction in the queue, in the next iteration variable 1 will
become an invalid number and a default time value will be
incorporated into the new T,,,,,., and the process will con-
tinue on until z==0. The final new T,,,,,,,,, will be composed of
the time value of the first instruction and several default time
values. This works similarly for all partial instruction queues.

In other words, attackers will not be able to find individual
instructions separately. Instead, they will have to specify the
complete instruction queue of n instructions to find the whole
sequence of instructions at one time and try all possible com-
binations until they find a T,,,,,,, that is exactly equal to a
known T, Therefore, the size of the key space of a virtual
machine performing process flow 300 is N” where N is the

10

15

20

25

30

35

40

45

50

55

60

65

10

size of the basic instruction set A. This key space will expand
exponentially with the complexity of the virtual machine and
the length of the original instruction queue I.

Attackers may attempt to run a virtual machine performing
process 300 in a hybrid of a run mode and a setup mode by
inputting the known valid T, and, at the same time, input-
ting an instruction queue [ having only one instruction. If the
one instruction is a correct one, the virtual machine will
produce T,,,,../~~71,,,.. in the run mode. The attacker now
can go on searching for the next instruction in the queue. This
weakness can be fixed by making sure the code of the two
modes cannot be effective at the same time. This may be
achieved by replacing the decision sub-steps of process flow
300 relating to each instruction (e.g., decision 314)) to per-
form an exclusive or (“XOR”) function rather an or function.
For example, sub-step 314, may determine whether “i==#1
XOR T,,,,,,% key==0". Because attackers may modify the
code of the virtual machine to change the code back to using
an OR operator, the code of a virtual machine may employ a
“code-check” mechanism to prevent such changes. The code-
check may randomly and dynamically read code around the
program counter and incorporate it into the time values. Thus,
if the code of the virtual machine is modified, such as if an
attacker replaced an XOR with an OR, the virtual machine
may fail to correctly execute the instructions and may gener-
ate an inoperative T,,,,,, even when the virtual machine
receives a valid T, value.

Additionally, the exemplary process flow 300 may appar-
ently anonymously execute a wrong instruction in the run
mode in instances where the key happens to be evenly divis-
ible by T,,,,,,- Alternative embodiments may be modified or
settings of embodiments may be varied to avoid such an
occurrence. In still other embodiments, a composite time
value determined according to an alternative function may
avoid the false positive of an anomalous key being evenly
divisible by T,,,,,,,,-

Process flows 100, 200, and 300 illustrate exemplary
embodiments of unified processes for anti-reverse engineer-
ing of software code. Of course, the various steps illustrated
in the process flows may be altered or rearranged in alterna-
tive embodiments. For example, in an alternative embodi-
ment similar to process flow 300, the step “key=key+z % key”
may be performed at the beginning of each loop of the process
flow rather than at the end of each loop. Likewise, while
process flow 300 illustrates an embodiment that decreases a
large value Z as a function of a current time value, in alterna-
tive embodiments the value may be altered as a function of a
value other than time. Further, alternative embodiments may
receive a small value as an input. In such embodiments, the
small value may be increased rather than decreased and the
unified process may terminate when the small value exceeds
a certain threshold. Of course, other embodiments may
receive other inputs useful for determining a number of itera-
tions of the unified process. Further, embodiments may
include additional or fewer steps.

In the process described above, “current time” may be
incorporated into key as an addition for simplicity. In fact, it
may be a non-linear incorporation. For example, its bits can
be shuffled and mixed with the value of “current time”. Any
method may be implemented to make key a deterministic but
very complex function of time. Further, embodiments may
use a value other than, or in addition to, time. For example,
embodiments may be configured to employ a function of a set
of'any values collected from the system (e.g., values based on
software or hardware).

The above embodiment is discussed in relation to a process
flow having the composite time value depend on the real time
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clock. In general, however, embodiments can incorporate a
lot more factors into the composite time value, making a time
map even more complicated and, hence, more secure. There
are two main types of factors: logical factors (e.g. number of
clock cycles, number of cache fetches/misses, etc.) and physi-
cal factors (e.g. an external real time clock). For logical fac-
tors, in general, a system clock cycle is the smallest variation
since all signals are synced with one clock source. Therefore,
processors of the same micro-architecture may run the pro-
tected code correctly regardless of variations in fractions of a
clock cycle that may be caused by temperature, power, imper-
fect oscillators, and the like. On the other hand, the nonlinear
incorporation of these logical factors into the time values can
cause huge deviations even for a single clock cycle difference.
Therefore, unless a processor has the exact same micro-ar-
chitecture as the one used in the transformation, an input time
map, T,,,, will not run correctly. For example, on the Xscale
270 microprocessor, even turning on or off the debugging
registers changes the performance counters.

For example, some embodiments may incorporate the val-
ues of a program counter into the output values (e.g., by
calling a function that returns values in the stack frame). In
such embodiments, if an attacker attempted to “unroll” the
loop of the unified process flow 300 to place breakpoints on
the inner iterations of the loop, the breakpoints would
unavoidable change the set of values of the program counter
seen by the virtual machine because the virtual machine code
would then execute in different places (i.e., not the limited
space bounded by the original loop). If the attacker were to
modify the code in the function to return fake values, this
would also require a different processor instruction than the
original one and therefore change the timing.

For physical factors, the time map may be sensitive to
variations of fractions of a clock cycle even for the same
processor micro-architecture. Thus embodiments may incor-
porate physical factors into a time map to lock an instruction
set to a single processor to further increase security. Such
embodiments, however, may sacrifice the ability to deploy
across multiple processors having the same micro-architec-
ture.

Embodiments may also be configured to modify the setup
code of the virtual machine to be junk code before publicly
distributing the virtual machine in a run mode. The junk code
may be a modified version that may execute in the same time
frame as unmodified setup code. Thus, embodiments may
hide the two-face architecture of the virtual machine.

The foundation for the security provided by various
embodiments is based on the complexity of the hardware
micro-architecture of the designated processor. To defeat
these embodiments, attackers may have to have the capability
to simulate the internal working of the designated processor
with the precision of up to one clock cycle. This is impossible
because modern processors are considered too complicated to
be simulated exactly. Further, even when the exact simulation
is possible, only the manufacturer of the particular processor
can do so since the data and information needed for the
simulation are kept as trade secrets.

Because the security of virtual machines according to the
embodiments disclosed are based on a processor’s complex-
ity which is supposed to be unknown to all, including the
virtual machine’s creator, the transformation process’s
mechanism may be made public just like a cryptography
algorithm. Software developers can perform the transforma-
tion on their own and keep the untransformed code (i.e., the
instruction map) secret for themselves and hence the security
will not be dependent on anyone else, including the virtual
machine creator.
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The code transformation performed by the embodiment of
process flow 300 is non-linear in the sense that the composite
time value T,,,,,,,, may change completely and non-linearly if
any instruction in the protected original sequence of instruc-
tions is changed or the code of the virtual machine is changed.
These non-linear changes make it extremely difficult for
attackers to do analysis of T, ,, to gain insight into the run-
mode process.

Attackers may also attempt to use hardware breakpoints to
stop the processor at instructions which are to be executed as
indicated in T, in order to trace the protected code. How-
ever, embodiments may preclude such an attack by using no
branch when deciding whether to execute an instruction or
not. For example, if an instruction in I is to reset a variable x
to zero, it may be coded in C language as follows:

key = key + current time

tl =T, % key

// check if tl =0, assuming that tl is 32 bits
tll=tl>>16 //'logic-OR tI[31.. 16] with tI[15.. 0]

tll=tl>>8 // logic-OR tl[15.. 8] with tI[7.. 0]

tll=tl>>4 //'logic-OR tl[8..4] with tI[3.. 0]

tll=tl>>2 //'logic-OR tl[3..2] with tI[1..0]

tll=tl>>1 //'logic-OR tl[1] with t1[0]

tl&=1 // take only the least significant bit

x=tl *x //iftl==0, theni=0;iftl == 1, i is unchanged

With the above pseudo code, all instructions may always be
executed but their effect may depend on whether key is
divided evenly by T, or not. Therefore, if attackers place a
breakpoint on any instruction of the virtual machine, the
processor may be interrupted right in the first iteration of the
loop, thus giving attackers no information into the protected
code sequence.

Attackers may also attempt to place breakpoints on
accesses to memory locations to stop the processor in the
middle of the run mode to gain insight into the process. The
virtual machine may be configured to prevent this kind of
attack by accessing all data after the clock is reset and before
the main loop is executed. Therefore, all data breakpoints, if
any, may stop the processor right at the beginning of the run
mode, giving attackers no insight into the process.

Attackers might try to use external timers to issue inter-
rupts to the processor during the run-mode process. However,
embodiments may use a technique similar to the one dis-
cussed in the section above to guarantee that the global inter-
rupt flag is disabled during the run-mode process.

Attackers might try to modify the code of the virtual
machine to record data of the run-mode process in order to
trace the sequence of instructions implied by a T, ,,,. Embodi-
ments may preclude such an attack since it will change the
timing of the run mode and cause embodiments to execute a
wrong sequence of instructions. To add more security, the
transformation process can randomly read code around the
processor’s program pointer and incorporate it into T, to
guard against code tampering.

Embodiments may also have another security layer that
turns oft all debugging facilities of the processor during the
run-mode process. The transformation process may be
executed when all debugging facilities are turned off and the
value of the hardware registers that control the debug facili-
ties may be incorporated into the time values. If attackers turn
onthe debugging facilities in the run mode, that may cause the
time values to have incorrect values and thus will damage the
process and prevent attackers from tracing the correct logic.
Attackers may try to tamper with the code that reads the debug
control registers into key to give fake values but such an attack

output
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may be precluded because of the virtual machine’s inherent
anti-tamper capability (as discussed above) together with the
code-check mechanism.

Attackers might try to execute the virtual machine on top of
a general-purpose virtual machine which can record a trace of
the unified process. Embodiments may cause such an attack
to fail too since it causes an effect similar to the case of
tampering.

If attackers gain the knowledge of the transformation pro-
cess, they might try to transform all possible sequences of
instructions to find a T, that matches the T, . in the
executable file and therefore find the corresponding instruc-
tion set I (i.e., they may attempt a brute-force attack). How-
ever, embodiments preclude such an attack since the total
number of trials is N” where N is the number of basic instruc-
tions and n is the number of instructions in the original
sequence. This can be made a huge number that may take
attackers many years. The numbers N and n can be arbitrarily
changed when a virtual machine is designed but the speed of
the virtual machine may be affected.

Attackers might try to use hardware debuggers to capture
output signals from the processor during the execution of the
virtual machine. This method may guarantee no interference
to the execution of the virtual machine. However, since the
processor will execute the virtual machine from its internal
cache, listening to the external signals will not provide sig-
nificant information into the process.

In light of these various security measures, embodiments
may only be attacked via a brute-force attack which may take
many years.

Alternative embodiments may provide anti-reverse engi-
neering processes without having a unified setup mode and
run mode. Such embodiments may execute instructions in a
deterministic virtual machine according to a series of time
values or according to a composite time value independent of
the process of creating the time values. However, such
embodiments may provide a backdoor into the run mode that
embodiments having a unified run mode and setup mode may
avoid.

These embodiments may be implemented with software,
for example modules executed on computing devices such as
computing device 410 of FIG. 4. Computing device 410 has
one or more processing device 411 designed to process
instructions, for example computer readable instructions (i.e.,
code) stored on a storage device 413. By processing instruc-
tions, processing device 411 may perform the steps and func-
tions disclosed herein. Storage device 413 may be any type of
storage device (e.g., an optical storage device, a magnetic
storage device, a solid state storage device, etc.), for example
a non-transitory storage device. Alternatively, instructions
may be stored in one or more remote storage devices, for
example storage devices accessed over a network or the inter-
net. Computing device 410 additionally may have memory
412, an input controller 416, and an output controller 415. A
bus 414 may operatively couple components of computing
device 410, including processor 411, memory 412, storage
device 413, input controller 416, output controller 415, and
any other devices (e.g., network controllers, sound control-
lers, etc.). Output controller 415 may be operatively coupled
(e.g., via a wired or wireless connection) to a display device
420 (e.g., a monitor, television, mobile device screen, touch-
display, etc.) in such a fashion that output controller 415 can
transform the display on display device 420 (e.g., in response
to modules executed). Input controller 416 may be opera-
tively coupled (e.g., via a wired or wireless connection) to
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input device 430 (e.g., mouse, keyboard, touch-pad, scroll-
ball, touch-display, etc.) in such a fashion that input can be
received from a user.

Of course, FIG. 4 illustrates computing device 410, display
device 420, and input device 430 as separate devices for ease
of identification only. Computing device 410, display device
420, and input device 430 may be separate devices (e.g., a
personal computer connected by wires to a monitor and
mouse), may be integrated in a single device (e.g., a mobile
device with a touch-display, such as a smartphone or a tablet),
or any combination of devices (e.g., a computing device
operatively coupled to a touch-screen display device, a plu-
rality of computing devices attached to a single display device
and input device, etc.). Computing device 410 may be one or
more servers, for example a farm of networked servers, a
clustered server environment, or a cloud network of comput-
ing devices.

Embodiments have been disclosed herein. However, vari-
ous modifications can be made without departing from the
scope of the embodiments as defined by the appended claims
and legal equivalents.

The invention claimed is:

1. A method for generating and executing anti-reverse
engineering logic comprising:

receiving, by a computing device, at least two sets of input

values, wherein at least one of the at least two sets of
input values is a non-empty set;
executing, by the computing device, one or more functions
corresponding to both a combination of the at least two
sets of input values and a set of states of the computing
device, wherein the one or more functions correspond to
a logic to be protected;

generating, by the computing device, a set of output values
corresponding to both the executed one or more func-
tions and the set of states of the computing device; and

outputting, by the computing device, the set of output
values,

whereby when the set of output values is later used as one

of the at least two sets of input values, the method
executes the same one or more functions, and

whereby an alteration of the set of states of the computing

device results in the method executing one or more dif-
ferent functions.

2. The method of claim 1,

wherein the step of executing, by the computing device,

one or more functions corresponding to both the com-

bination of the at least two sets of input values and the set

of states of the computing device comprises:

using a first value in a first set of input values to make a
first determination of whether a function is to be
executed;

using a first value in a second set of input values and the
set of states to make a second determination of
whether the function is to be executed; and

executing the function if either the first determination or
the second determination is true.

3. The method of claim 1, wherein the step of executing, by
the computing device, one or more functions corresponding
to the at least one set both the combination of the at least two
sets of input values and the set of states of the computing
device comprises:

iterating through each function in a non-empty set of func-

tions, for each function performing the method:
identifying a key value corresponding to set of states of the
computing device;

identifying whether the function is to be executed based on

a function of the key value and the at least two sets of
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input values; and executing the function and inserting
the key value into the set of output values if the function
is to be executed.

4. The method of claim 1, further comprising creating, by

the computing device, a deterministic environment,

wherein said executing one or more functions correspond-
ing to both the combination of the at least two sets of
input values and the set of states of the computing device
and said generating the set of output values correspond-

ing to both the executed one or more functions and the 10

set of states of the computing device are performed
within the deterministic environment.

5. The method of claim 4, wherein the step of creating, by
the computing device, the deterministic environment com-
prises disabling interrupts.

6. The method of claim 1, wherein the step of executing, by
the computing device, one or more functions corresponding
to the combination of the at least two sets of input values, and
the step of generating, by the computing device, the set of
output values corresponding to both the executed one or more
functions and the set of states of the computing device are
executed in a loop structure, and

wherein a termination condition of the loop structure is

based on a value that is changed by a deterministic
function of the computing device until it meets a certain
condition.

7. The method of claim 1, wherein the set of output values
are incorporated into an output composite value.

8. The method of claim 7, wherein a non-operational value
is additionally generated and incorporated into the output
composite value,

wherein when the output composite value is later used as an

element of the at least two sets of input values, the
non-operational value does not alter execution of the
same one or more functions.

9. The method of claim 1, further comprising replacing, by
the computing device, one or more branching functions with
one or more non-branching functions that render equivalent
results.

10. A system for generating and executing anti-reverse
engineering logic comprising:

a memory; and

aprocessor operatively coupled to the memory, the proces-

sor configured to perform the method comprising:

receiving at least two sets of input values, wherein at
least one of the at least two sets of input values is a
non-empty set;

executing one or more functions corresponding to both a
combination of the at least two sets of input values and
a set of states of the computing device, wherein the
one or more function correspond to a logic to be
protected;

generating a set of output values corresponding to both
the executed one or more functions and the set of
states of the computing device; and

outputting the set of output values,

whereby when the set of output values is later used as one

of the at least two sets of input values, the processor

executes the same one or more functions, and

whereby an alteration of the set of states of the computing

device results in the method executing one or more dif-
ferent functions.

11. The system of claim 10,

wherein the step of executing one or more functions cor-

responding to both the combination of the at least two
sets of input values and the set of states of the computing
device comprises:
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using a first value in a first set of input values to make a
first determination of whether a function is to be
executed;

using a first value in a second set of input values and the
set of states to make a second determination of
whether the function is to be executed; and

executing the function if either the first determination or
the second determination is true.

12. The system of claim 10, wherein the step of executing
one or more functions corresponding to both the combination
of'the at least two sets of input values and the set of states of
the computing device comprises:

iterating through each function in a non-empty set of func-

tions, for each function performing the method:

identifying a key value corresponding to the set of states of
the computing device;

identifying whether the function is to be executed based on

a function of the key value and the at least two sets of

input values; and

executing the function and inserting the key value into the

set of output time values ifthe function is to be executed.

13. The system of claim 10, wherein the processor is fur-
ther configured to perform the method of creating a determin-
istic environment,

wherein said executing one or more functions correspond-

ing to both the combination of the at least two sets of
input values and the set of states of the computing device
and said generating the set of output values correspond-
ing to both the executed one or more functions and the
set of states of the computing device are performed
within the deterministic environment.

14. The system of claim 13, wherein the step of creating the
deterministic environment comprises disabling interrupts.

15. The system of claim 10, wherein the step of executing
one or more functions corresponding to the combination of
the at least two sets of input values, and the step of generating
the set of output values corresponding to both the executed
one or more functions and the set of states of the computing
device are executed in a loop structure, and

wherein a termination condition of the loop structure is

based on a value that is changed by a deterministic

function of the computing device until it meets a certain
condition.

16. The system of claim 10, wherein the set of output values
are incorporated into an output composite value.

17. The system of claim 16, wherein a non-operational
value is additionally generated and incorporated into the out-
put composite value,

wherein when the output composite value is later used as an

element of the at least two sets of input values, the

non-operational value does not alter execution of the
same one or more functions.

18. The system of claim 10, wherein the processor is fur-
ther configured to perform the method of replacing one or
more branching functions with one or more non-branching
functions that render equivalent results.

19. A non-transitory computer-readable medium having
computer-readable code stored thereon that, when executed,
performs the method:

receiving at least two sets of input values, wherein at least

one of the at least two sets of input values is a non-empty

set;

executing one or more functions corresponding to both a

combination of the at least two sets of input values and a

set of states of the computing device, wherein the one or

more functions correspond to a logic to be protected;
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generating a set of output values corresponding to both the
executed one or more functions and the set of states of
the computing device; and
outputting the set of output values,
whereby when the set of output values is later used as one
of the at least two sets of input values, the method
executes the same one or more functions, and
whereby an alteration of the set of states of the computing
device results in the method executing one or more dif-
ferent functions.
20. The medium of claim 19,
wherein the step of executing one or more functions cor-
responding to both the combination of the at least two
sets of input values and the set of states of the computing
device comprises:
using a first value in a first set of input values to make a
first determination of whether a function is to be
executed;
using a first value in a second set of input values and the
set of states to make a second determination of
whether the function is to be executed; and

18

executing the function if either the first determination or
the second determination is true.

21. The medium of claim 20, wherein the step of executing
one or more functions corresponding to both the combination
of'the at least two sets of input values and the set of states of
the computing device comprises:

iterating through each function in a non-empty set of func-
tions, for each function performing the method:

identifying a key value corresponding to the set of states of
the computing device;

identifying whether the function is to be executed based on
a function of the key value and the at least two sets of
input values; and

executing the function and inserting the key value into the
set of output values if the function is to be executed.

22. The medium of claim 19, wherein the set of output
values are incorporated into an output composite value.
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